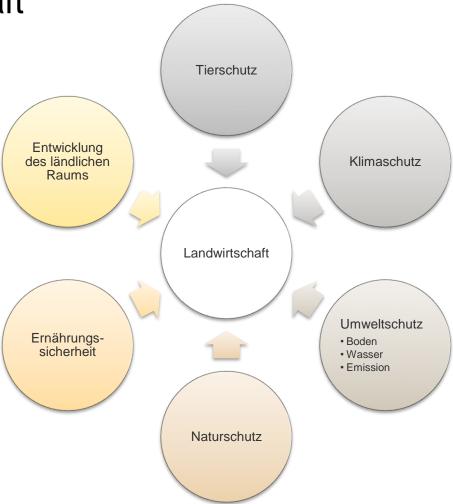


Grünland im Spannungsfeld zwischen gesellschaftlichen und futterbaulichen Anforderungen



Entwicklungsprogramm für den ländlichen Raum im Freistaat Sachsen 2014 - 2020 Gesellschaftliche Erwartungen an die

Landwirtschaft

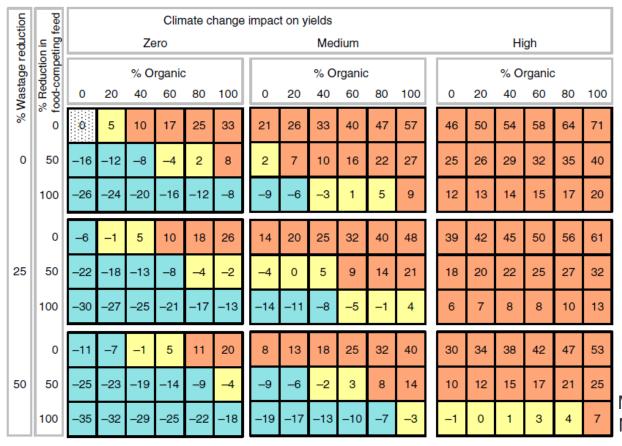
Koalitionsvertrag 2019-2024 Inhalte mit Bezug zur Landwirtschaft

- Leistungs- und wettbewerbsfähige, vielfältige und nachhaltige Landwirtschaft
- I ausgewogenes & marktgerechtes Wachstum des Ökolandbaus
- Regionale Produkte und Vermarktung
- Flächengebundene, tiergerechte Nutztierhaltung
- Halbierung PSM-Einsatz bis 2030
- Klima-, Umwelt-, Naturschutz, Artenvielfalt, Insektenschutz
- Ziele der GAP 2020

Die Mittel, die der Freistaat durch die Erhöhung der Umschichtung aus der 1. in die 2. Säule erhält, werden zur Stärkung der Agrarumwelt- und Klima-Programme (AUK) verwendet. Wir setzen uns in der GAP für Schaft, Ziegen- und Eiweißprämien sowie für die Beihilfefähigkeit von Gehölzkleinstrukturen auf Grünland ein.

GAP nach 2020 Die neun Ziele der zukünftigen GAP

- gerechtes Einkommen für Landwirtinnen und Landwirte
- Stärkung der Wettbewerbsfähigkeit
- Wiederherstellung eines ausgewogenen Kräfteverhältnisses in der Lebensmittelkette
- Klimaschutzmaßnahmen
- Umweltschutz
- Erhalt von Landschaften und Biodiversität
- Förderung des Generationswechsels
- dynamische ländliche Gebiete
- Schutz von Lebensmittelqualität und Gesundheit


Wandel in der Landwirtschaft...

- Gesellschaftlich gefordert, aber auch bedingt durch:
 - Digitalisierung, Biotechnologie, Zuchtfortschritt, internationalen Wettbewerb
 - Klimawandel
 - I Demografischer Wandel, Wettbewerb um Arbeitskräfte
 - Akzeptanz

Zielkonflikte

- Umwelt-/Naturschutz vs. Ernährungssicherung
- Tierwohl vs. Klima-/Umweltschutz
 - Bsp. Grundfutter vs. Methanemission, Auslaufflächen vs. Ammoniakemission
- Ökologische Agrarwende vs. nachhaltige Intensivierung

Kann die Welt auf ökologische Weise ernährt werden?

Müller et al. (2017) Nature Communications

Fig. 2 Cropland area change. Percentage change in cropland areas with respect to the reference scenario. Scenarios differ in: organic shares (0-100%), impacts of climate change on yields (low, medium, high), food-competing feed reductions (0, 50, 100% reduced from the levels in the reference scenario), and wastage reduction (0, 25, 50% compared to the reference scenario). Colour code for comparison to the reference scenario value (i.e. 0% organic agriculture, no changes in livestock feed and food waste, dotted grey): > +5%: red, < −5% blue, between −5% and +5% yellow; in the reference scenario, cropland areas are 6% higher than in the baseline today

Hohe Bedeutung der Tierhaltung für eine nachhaltige Landnutzung

- Nicht ackerfähiges Dauergrünland kann nur durch Wiederkäuer genutzt werden (weltweit 2/3 der landwirtschaftlich genutzten Fläche)
- Vegetarische Ernährung würde 8 % der weltweiten Ackerflächen (Futteranbau) für die menschliche Ernährung freigeben. Das reicht aber nicht, um die Energie und Proteine aus der Tierhaltung zu ersetzen.
 - -> grünlandgebundene Tierproduktion
 - -> weniger Futter von Ackerflächen ("Feed no Food")

Handlungsfelder - Grünland

Kulturlandschaft

Boden/Wasser/Klima

Biodiversität

Futter, Energie

Klimaschutz

- mehr Milch und Fleisch aus Gras
- Reduktion Verzicht mineralischer N-Dünger
- emissionsarme Wirtschaftsdüngerausbringung

Umweltschutz

- Grünland auf erosionsgefährdeten Standorten
- gewässerbegleitendes Grünland
- Grünland in sensiblen und prioritären Gebieten

Erhalt von Landschaften und Biodiversität

- artenreiches Grünland
- Grünlandnutzung in Mittelgebirgsregionen
- Weidetierhaltung

Futterbauliche Anforderungen Bsp. Grassilage

- Anzustrebende Gehalte in Grassilagen für Hochleistungskühe
- Energiegehalt (MJ ME / MJ NEL)
- Proteinwert (nXP, RNB)
- Strukturwert (XFa/NDF, Häcksellänge)
- KH (Zucker, Stärke)
- Mineral-, Wirkstoffe
- Gärqualität
- Hygiene (XA, Schimmel, Hefen)
- Stabilität (Nacherwärmung)

	Dimension	Grassilage		
Parameter		DLG 1999	SPIEKERS 2004	
Trockenmasse	%	30 - 40	30 - 40	
Rohasche	% i. d. T	9 - 11	< 10	
Rohprotein	% i. d. T	< 17 ²⁾	< 17 ²⁾	
Rohfaser	% i. d. T	23 - 25	22 - 25	
Stärke	% i. d. T	keine		
ME	MJ/kg T	>=10,2	> 10,6 bzw. > = 10,0	
NEL	MJ/kg T	>=6,13)	> = 6.4 bzw. $> = 6.0^{40}$	
nXP	g/kg T	>= 135	> 135	
RNB	g N/kg T	< 6	< 6	
Buttersäure	% i. d. T	< 0,3		
Essig- und Pro- pionsäure	% i. d. T	2,0 - 3,5		
NH ₃ -N	% Gesamt N	< 10		
pH-Wert		4,3 - 4,6 ³⁾		
ⁱ⁾ in Abhängigkeit vom l	Kornanteil	²⁾ 15 % bei Ackergrassilage		

³⁾ in Abhängigkeit vom Trockenmassegehalt

^{14 | 20.02.2020 |} Dr. Stefan Kesting, Ref. 75

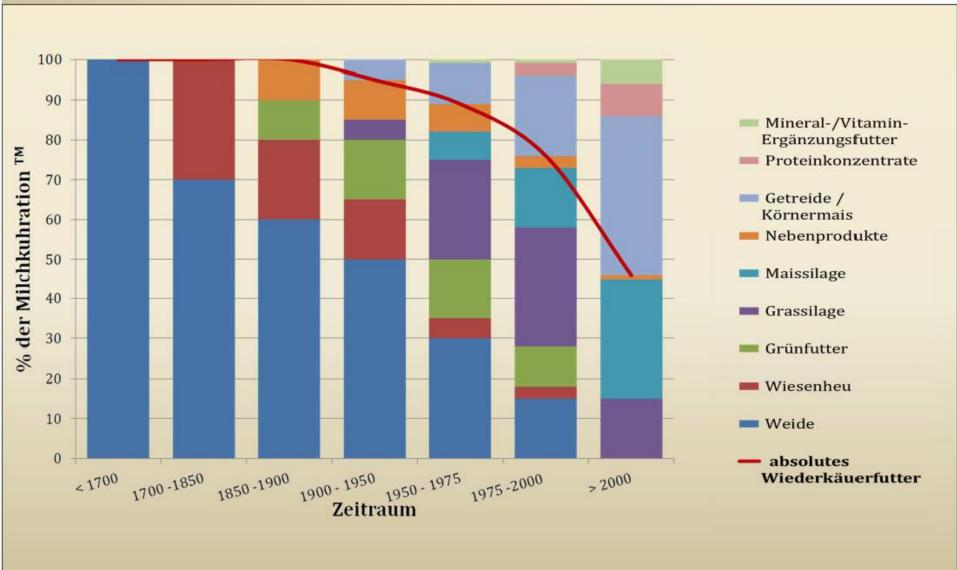
Werbung für Milch...

Bildet nicht die hochtechnisierte Produktion ab, sondern erzeugt ein verklärtes Bild der Landwirtschaft

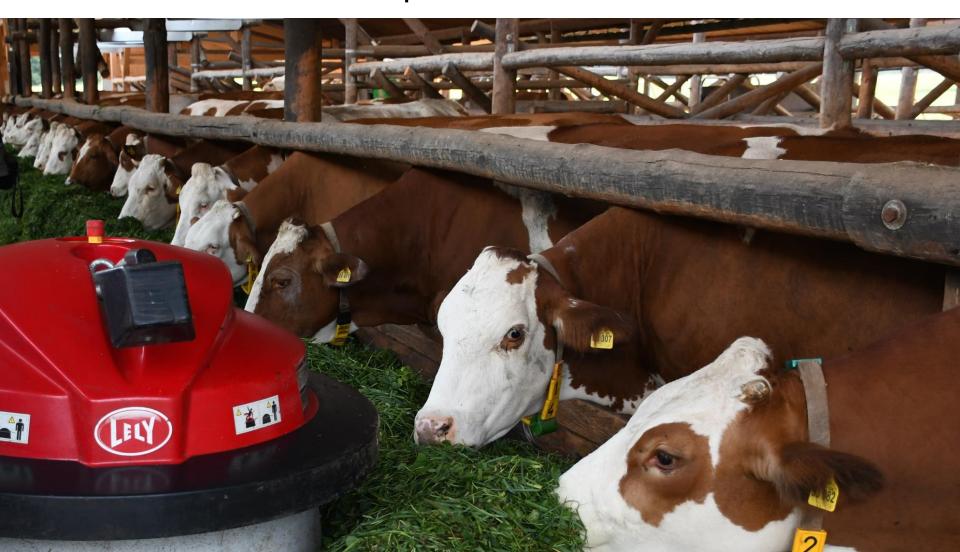
Quelle: https://www.verbraucherzentrale.de/wissen/lebensmittel/ lebensmittelproduktion/rund-um-die-milch-erzeugung-verarbeitung-und-angebote-12775

Arten der Milcherzeugung

- **Biomilch** (EG-Öko-VO): 6 m² Stallfläche + 4,5 m² Auslauffläche pro Kuh, 60 % Raufutter in der Tagesration u.a.
- Heumilch: seit 2016 EU-weit geschützte Bezeichnung (g.t.S. = garantiert traditionelle Spezialität), Übergangsfrist bis 2018
- Weidemilch: kein geschützter Begriff, -> versch. Label
 - I Pro Weideland Deutsche Weidecharta (2017): Weideauslauf an mind. 120 Tagen pro Jahr, 6 Stunde pro Tag, 2.000 m² pro Kuh (davon 1.000 m² Weide)


mind. 720 Weidestunden => 30 Vollweidetage + 334 Stalltage

Milchkuhrationen


Von "Grasmilch" → "Kraftfuttermilch"

Zurück zur "Grasmilch"? Grünlandbasierte Milchproduktion als Alternative

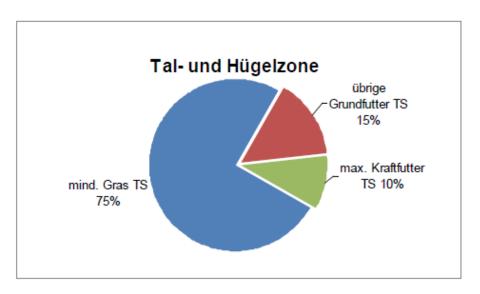
Grünlandbasierte Milchproduktion

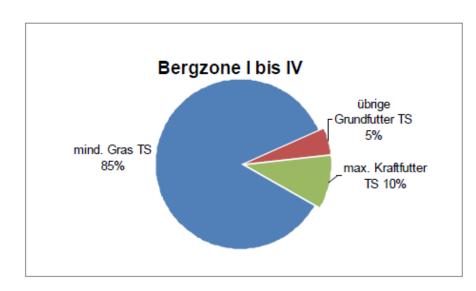
- Entspricht den gesellschaftlichen Erwartungen
- Hohe Produktqualität (Fettsäuremuster)
- Verbesserte Klimabilanz (flächenbezogen, bei Berücksichtigung von Landnutzungsänderungen)
- Erhöhung des Grobfutteranteils (> 50 %) und Erhöhung des Grünlandanteils am Grobfutter
- Nachteil: höhere Grundfutterkosten, geringere Milchleitung pro Kuh
- Ausgleich durch höheren Produktpreis oder Förderung notwendig

Produktionssystembeitrag GMF Graslandbasierte Milch- und Fleischproduktion

Design:

- Sämtliche Raufutterverzehrer eines Betriebes müssen die Anforderungen als Gesamtheit erfüllen.
- Anforderungen über die Futterration.
- Überprüfung durch die Futterbilanz.


Beitrag:


Fr. 200.- pro Ha Grünland.

Kontrolle:

- Futterbilanz jährlich
- Vor Ort alle 4 Jahren.

Produktionssystembeitrag GMF Graslandbasierte Milch- und Fleischproduktion

Grafik 1: Notwendige Rationszusammensetzung in Trockensubstanz bei gesamtbetrieblicher Betrachtung

Quelle: Factsheet GMF, agridea

Produktionssystembeitrag GMF Graslandbasierte Milch- und Fleischproduktion

Milchleistung pro Milchkuh	Anteil Betriebe mit GMF		
(Verkehrsmilch)	2014	2015	2016
bis 5'000 kg	83%	87%	88%
5'000 - 6'000 kg	78%	81%	82%
6'000 - 7'000 kg	67%	70%	70%
7'000 - 8'000 kg	51%	51%	53%
8'000 - 9'000 kg	34%	32%	36%
9'000 - 10'000 kg	26%	23%	25%
über 10'000 kg	38%	30%	39%
Alle Betriebe	66%	67%	67%

Quelle: BLW, Betriebe mit Direktzahlungen

Grünlandbasierte Milchproduktion...

bedeutet Intensivierung der Grünlandwirtschaft bei leistungsorientierter Fütterung

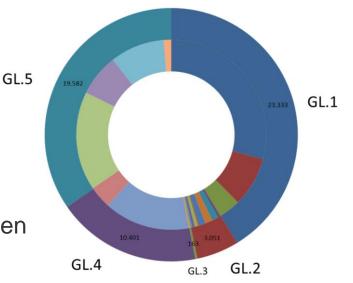
oder

weniger leistungsorientierte Tierhaltunglow[er]-input-Strategie

Quelle: Steinhöfel, Innovation 01/2019

Quelle: ADF saure Detergensfaser, ADL saures Detergenslignin, NDF Neutrale Detergensfaser, NEL Nettoenergie-Laktation, TM Trockenmasse, UDP Pansen-Durchflussprotein Anforderungen an den Futterwert von Gras für gras- bzw. maisbetonte Rationen* bei leistungsorientierter Fütterung

		gras- betont	mais- betont
Zellulose	g/kg TM	<230	<250
Hemicellulose	g/kg TM	<180	<190
NDF	g/kg TM	<410	<460
NDF-Verdaulichkeit	%	>60	>50
runimale NDF-Abbaurate	% je h	>4	>3
ADF	g/kg TM	<240	<270
ADL	g/kg TM	<20	<25
Rohfaser	g/kg TM	<230	<250
Rohprotein	g/kg TM	<150	<170
Proteinlöslichkeit	% des RP	<45	<55
UDP	% des RP	>25	>15
Reineiweiß	% des RP	>60	>50
Zucker	g/kg TM	<100	<100
Fruktane	g/kg TM	<50	<50
NEL	MJ/kg TM (>6,4	>6,0


^{*&}gt;70 % Gras- bzw. Silomais in der TM der Grobfutterration

Grünland mit Agrarumweltmaßnahmen

in Sachsen

- 19 % des Grünlandes mit AUM
- Ziel: naturschutzfachlich wertvolle Flächen erhalten

räumliche und zeitliche Diversifizierung der Nutzung!

durch Ergebnisorientierte Honorierung oder Steuerung über Kulissen.

