

Bayerische Landesanstalt für Landwirtschaft

Institut für Landtechnik und Tierhaltung

Arbeitsbereich: Umwelttechnik in der Landnutzung Arbeitsgruppe: Emissionen und Immissionsschutz

"Solarstromspeicher in Form von Eiswasser zur Milchkühlung"

Josef Neiber Fachtagung Bau und Technik in Köllitsch, 25.11.2015

Optimierung der Eigenstromnutzung von PV-Anlagen

Die **Einbindung und Nutzung** von eigen erzeugter regenerativer Energie in das betriebliche Lastprofil.

- Einspeisevergütung für Solarstrom ist niedriger als der Bezugspreis für Strom (Ökonomie)
- Einsparung fossiler Energieträger (Ökologie)

Möglichkeiten zur Optimierung des Eigenstromverbrauchs

- Lastverschiebung: Anpassung des Stromverbrauchs an die Stromerzeugung
- Ausrichtung der PV-Anlage: Verlängerung der solaren Einstrahlungszeiten (Ost-West)
- **Technische Ausstattung:** Automatisierung (Melk-, Fütterungs-, Entmistungssysteme)
- Auslegung der Anlagengröße an den Energieverbrauch: Grund-, Spitzenlast
- Speicherung und bedarfsbezogene Nutzung: Batteriespeicher (Blei-Säure, Lithiumlonen), Druckluftspeicher, Eisspeicher in der LW für die Milchkühlung

Ziel der Untersuchungen ist, die Nutzung von Solarstrom für die Erzeugung von Eiswasser zum Abkühlen der Milch auf Lagertemperatur zu analysieren.

Gliederung

1. Material und Methode

- Milchviehstall und PV-Anlage der Versuchsstation Grub
- Beschreibung Milchkühleinrichtungen und Funktionserläuterung der Eiswasserkühlung und –speicherung
- Datenerfassung

2. Ergebnisse

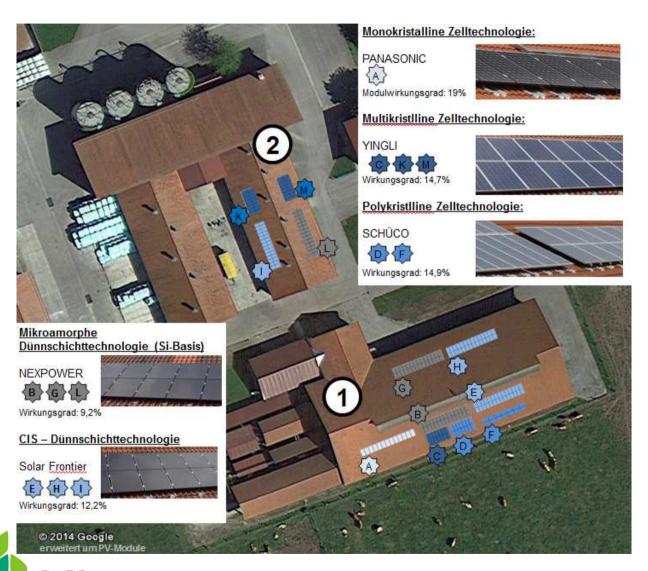
- Stromverbrauch der Milchkühlungen
- Speicherung und bedarfsgerechte Nutzung von Solarstrom für die Erzeugung von Eiswasser zum Abkühlen der Milch

3. Modellbetrachtung

4. Fazit

Milchviehstall der Versuchsstation Grub

Tier und Technik


Die Milchviehherde der Versuchsstation Grub ist in zwei Gruppen aufgeteilt.

In der einen Gruppe werden 65 Milchkühe mit einem Automatischen Melksystem (AMS) gemolken. Die Abkühlung der Milch auf Lagertemperatur erfolgt im Direktkühlverfahren.

In der Vergleichsgruppe werden 55 Kühe in einem Fischgrätenmelkstand (FG) gemolken. Bis Ende 2013 wurde die Milch mit einer im Milchkühltank integrierten Eiswasserkühlung abgekühlt. Seit Anfang 2014 ist die kombinierte Kühlanlage mit der Eiswasserbank und Vorkühlung in Betrieb.

Maximale Gesamtleistung PV-Anlage: 44 kWp

Tier und Technik

1) Außenklimastall:

PV-Bebauung auf Süd- und Norddach; Dachneigung 24°

PV-Module:

A PANASONIC HIT 240 Wp	3,12 kWp
1x13 Module; SB 3000	

NEXPOWER NT-AX 145 Wp 2x2x7 Module: 2xSB 2000 HF-30

YINGLI YL P 240 Wp 3,36 kWp

SCHÜCO MPE PG 09 245 Wp 3,43 kWp 1x14 Module: SB 3000

Solar Frontier SF-S 150 Wp 3,60 kWp 6x4 Module; SB 3800

SCHÜCO MPE PG 09 245 Wp 3,43 kWp 1x14 Module: SB 3000

NEXPOWER NT-AX 145 Wp 2x2x7 Module: 2xSB 2000 HF-30

Solar Frontier SF-S 150 Wp 3,60 kWp 6x4 Module; SB 3800

Gesamt Außenklimastall 28,66 kWp

2 Abkalbestall:

PV-Bebauung auf Ost- und Westdach; Dachneigung 25°

PV-Module:

Gesamt Abkalbestall

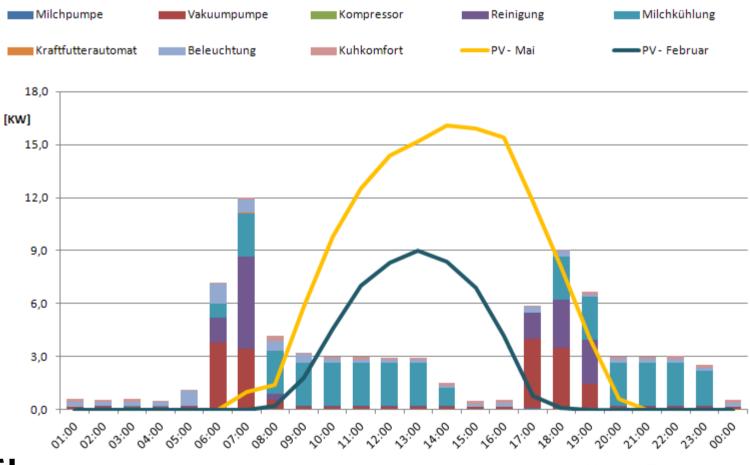
Solar Frontier SF-S 150 Wp	3,60 kWp
6x4 Module; SB 3800	

YINGLI YL P 240 Wp 1x16 Module; SB 3000

NEXPOWER NT-AX 145 Wp 4,06 kWp 2x2x7 Module; 2xSB 2000 HF-30

₩ YINGLI YL P 240 Wp1x16 Module; SB 3000

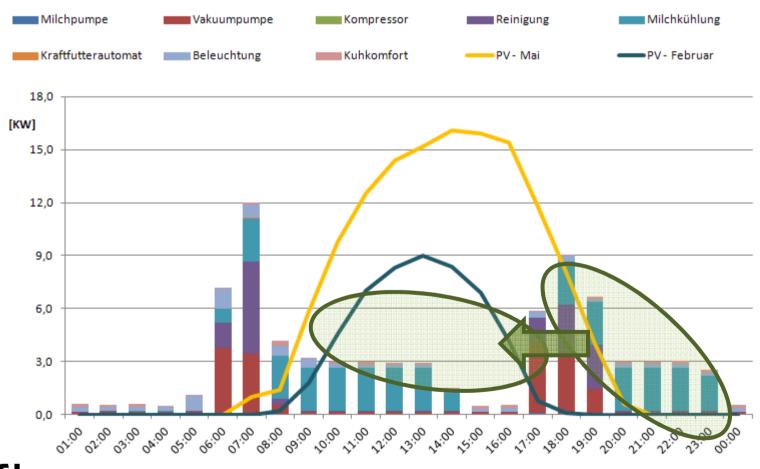
Neiber-ILT2b 11-2015 010


15,34 kWp

Lastverschiebung Eiswasseraufbereitung

Tier und Technik

Tageslastgang FG-Melkstand (55 Milchkühe)


Lastverschiebung Eiswasseraufbereitung

Tier und Technik

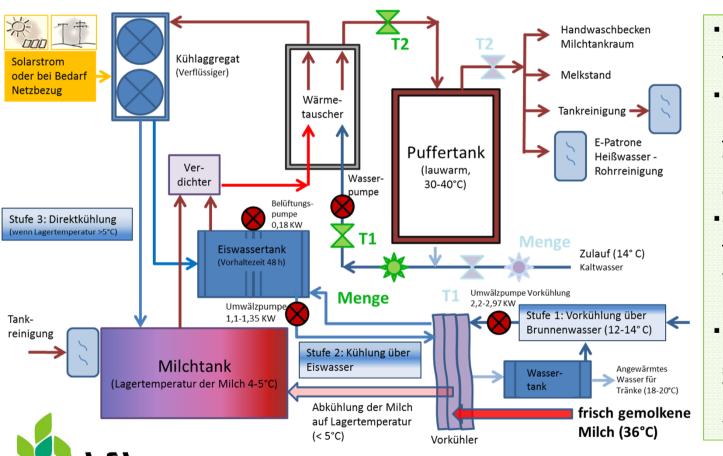
Verschiebung der Eiswasseraufbereitung für die Milchkühlung in Zeiten mit hoher solarer Einstrahlung.

Tageslastgang FG-Melkstand (55 Milchkühe)

Funktionsübersicht:

Tier und Technik

Kombination aus Vor-, Eiswasser- und Direktkühlung



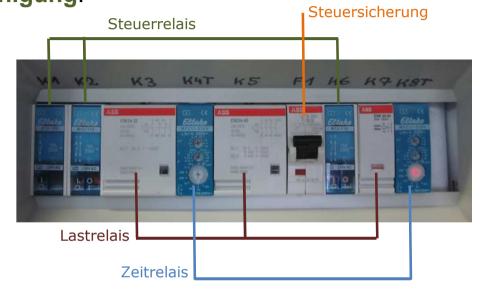
Eiswasserkühlung an der VS Grub: Erneuerung der Milchkühlung des Melkstandbereichs

Kombi-Kühlung: Vorkühler, Milchtank, Eiswasserbank (Speichervolumen: 2 Tage),

Kühlaggregat (Außenwand des Gebäudes)

PV-Anlage mit einer Regeleinheit für die Nutzung von Solarstrom für die Milchkühlung

- Stufe 1: Abkühlung mit <u>Brunnenwasser</u> (>Tränkewasser)
- Stufe 2: Abkühlung auf Lagertemperatur mit <u>Eiswasser</u> (wenn PV-Anlage ausreichend Strom für die Bildung von Eiswasser erzeugt)
- Stufe 3: Abkühlung im <u>Direktkühlverfahren</u> (-> wenn nicht genügend Eiswasser vorhanden)
- Die bei der Abkühlung der Milch entstandene Wärme steht in Form von warmen Wasser für die Melkanlagenund Tankreinigung zur Verfügung.

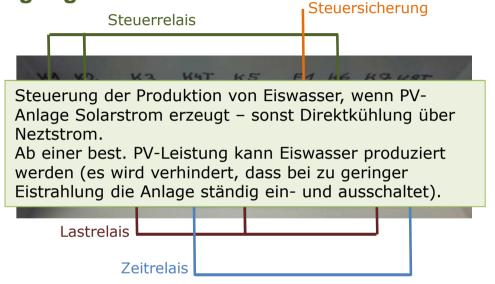

Regeltechnik zur Vernetzung der Stromerzeugung mit der Kühltechnik

Nutzung von Solarenergie zum Aufbau eines Eisspeichers und zum Erhitzen des Brauchwassers für die Melkanlagenreinigung.

Tier und Technik

Steuerung Heizungspumpe Warmwasserboiler

Neiber-ILT2b 11-2015 010


Regeltechnik zur Vernetzung der Stromerzeugung mit der Kühltechnik

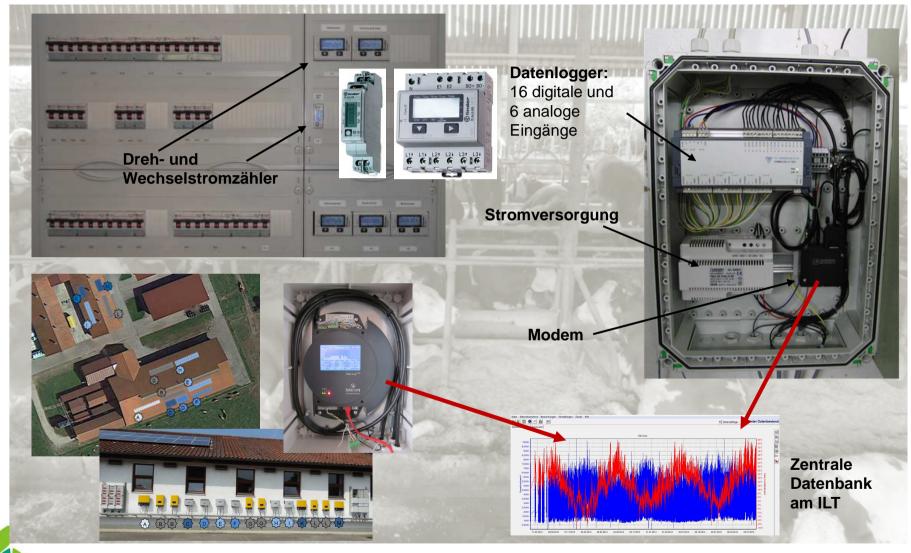
Nutzung von Solarenergie zum Aufbau eines Eisspeichers und zum Erhitzen des Brauchwassers für die Melkanlagenreinigung.

Tier und Technik

Steuerung Heizungspumpe Warmwasserboiler

Es wird sichergestellt,

- dass nach dem Melken genügend Warmwasser zur Melkanlagen- und Tankreinigung zur Verfügung steht
- dass nach dem Melkvorgang Warmwasser vordergründig durch die entzogene Wärme aus der Kühlung der Milch genutzt wird



Datenerfassung und Auswertung

Tier und Technik

Datenerfassung und Auswertung

Tier und Technik

Vergleichswerte des Stromverbrauchs der Direkt- und Kombikühlung jeweils von 01.07. – 30.06.

		AMS		FG		
Jahr	Außentemperatur	Kühlung Milchtank	Heizung WW Tankreinigung	Kühlung Milchtank	Umwälzpumpe Eiswasseranlage	Heizung WW Tankreinigung
	°C	kWh	kWh	kWh	kWh	kWh
12/13	9,2	7.298	417	12.427	0	3,181
13/14	10,7	7.886	405	8.314	149	1.646
14/15	10,2	7.436	446	4.534	372	588

15.609 kWh

5.495 kWh

		Al	MS	FG		
Jahr	Außentemperatur	Kühlung Milchtank			Heizung WW Tankreinigung	
	°C	kWh/Kuh		kWh/Kuh		
12/13	9,2	118,7			283,8	
13/14	10,7	127,5		183,8		
14/15	10,2	12	21,3	99,9		

·	J	_	,	-	U	•	
_	4						

65%

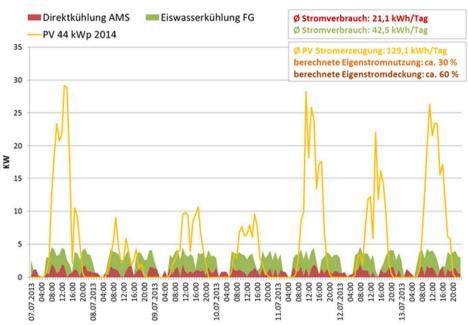
10.114 kWh 0,26 € 2.630 €

Kosten:	
Kühltank inkl. Kühlaggregat Vorkühler	17.000 €
Eisspeicher inkl. Montage	10.000 €
Elektromontage inkl. Steuerung	3.500 €
Gesamtkosten	33.500 €
Amortisationszeit	12.7 Jahre

		AMS					
Jahr	Außentemperatur	Kühlung Milchtank	Heizung WW Tankreinigung	Kühlung Milchtank	Umwälzpumpe Eiswasseranlage	Heizung WW Tankreinigung	
	°C	kWh/100	kWh/100 kg Milch		kWh/100 kg Milch		
12/13	9,2	1	1,24		2,35		
13/14	10,7	1,33		1,60			
1 <mark>4/1</mark> 5	10,2	1	,26	0,93			

Vergleichswerte des Stromverbrauchs der Direkt- und Kombikühlung jeweils von 01.07. – 30.06.

		ΙA	MS		FG		
Jahr	Außentemperatur	Kühlung Milchtank	Heizung WW Tankreinigung	Kühlung Milchtank	Umwälzpumpe Eiswasseranlage	Heizung WW Tankreinigung	
	°C	kWh	kWh	kWh	kWh	kWh	
12/13	9,2	7.298	417	12.427	0	3.181	15.609 kWh
13/14	10,7	7.886	405	8.314	149	1.646	
14/15	10,2	7.436	446	4.534	372	588	5.495 kWh
		IA	MS		FG		65%
Jahr	Außentemperatur	Kühlung Milchtank	Heizung WW Tankreinigung	Kühlung Milchtank	Umwälzpumpe Eiswasseranlage	Heizung WW Tankreinigung	10.114 kWh
	°C	kWł	n/Kuh		kWh/Kuh		
12/13	9,2	11	8,7		283,8		
13/14	10,7	12	127,5 Kosten:				
14/15	10,2	12	21,3	Nosie	111.		
	A - 0 1 1	Al	ИS	V / a. al 11 la l	k inkl. Kühlaggreg	at	17.000 € 3.000 €
Jahr	Außentemperatur	Kühlung Milchtank	Heizung WW Tankreinigung	Kü Vorkühler Mill Eisspeicher			10.000 €
	°C	kWh/100) kg Milch	inkl. Montage			
12/13	9,2	1,24		Elektror	montage inkl. Steu	erung	3.500 €
13/14	10,7	1,33		Gesam	tkosten		33.500 €
14/15	10,2	1,	.26	Amortis	ationszeit		12,7 Jahre



Stromverbrauch und Eigenstromnutzung: Milchviehherde der VS Grub

65 Milchkühe: Automatisches Melksystem (AMS), Direktkühlverfahren.

55 Milchkühe: Melkstand (FG), bis 2013 Eiswasserkühlung, ab 2014 Kombi-Kühlung mit Eiswasserbank

Stromyorbrough and Salaratramary augung	01.07.2012 - 30.06.2013	01.07.2014 - 30.06.2015		
Stromverbrauch und Solarstromerzeugung	[kWh] / [kWh/100 kg Milch]			
Direktkühlung + Tankreinigung AMS	7.716 / 1,24	7.882 / 1,26		
Eis- bzw. Kombi aus Vor-, Eis-, Direktkühlung FG	15.609 / 2,35	5.495 / 0,93		
Gesamtverbrauch Kühlung AMS + FG	23.324	13.377		
PV 44 kWp 2014/15 ¹⁾	38.640	38.640		
Eigenstromnutzung (berechnet)	9.837	7.640		
Netzbezug (berechnet)	13.487	5.737		
Autarkiegrad bzw. Eigenstromdeckung	42,2	57,1		

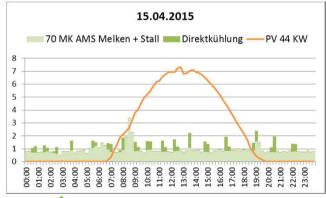
Durch die Umrüstung des Milchkühlsystems konnte ca. 65% Strom eingespart werden.

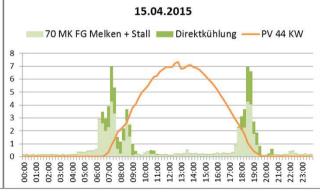
Für die Direktkühlung des AMS und Kombi-Kühlung des Melkstands musste 57,5% weniger Netzstrom bezogen werden.

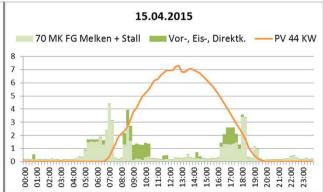
Neiber-ILT2b 11-2015 010

Modellbetrachtung: Vergleich Eigenstromnutzung von Milchviehbetrieben

Melksystem	Melkroboter (AMS)	Melkstand (FG)	Melkstand (FG)
Kühlanlage	Direktkühlung	Direktkühlung	Vor-, Eis-, Direktkühlung
		kWh	
Stromverbrauch Kühlung	8.488	9.133	6.993
PV 44 kWp 2014/15 ¹⁾		38.640	
Eigenstromnutzung (berechnet)	4.001	2.671	5.053
Netzbezug (berechnet)	4.487	6.461	1.941
Stromverbrauch Melken	15.738	11.058	11.034
Melkroboter	3.002		
Vakuumpumpe	5.491	7.806	6.756
Kompressor	7.245		
Melkanlagenreinigung		3.252	4.278
Milchgewinnung gesamt	24.226	20.191	18.028
Stromverbrauch Stall gesamt		14.552	
Beleuchtung		4.110	
Frostsicherung		1.880	
Kraftfutterautomat		697	
Kuhbürste		734	
Güllepumpe		721	
Mistschieber		922	
Ventilatoren		2.633	
HDR		1.485	


Modellbetrachtung




01.07.2014 – 30.06.2015 Milchviehbetrieb mit 70 Milchkühen, 9.000 kg Milch/Kuh
--

Melksystem	Melkroboter (AMS)	Melkstand (FG)	Melkstand (FG)
Kühlanlage	Direktkühlung	Direktkühlung	Vor-, Eis-, Direktkühlung
PV 44 kWp 2014/15 ¹⁾		38.640	
Milchviehhaltung gesamt	38.778	34.743	32.580
Eigenstromnutzung (berechnet)	14.492	8.468	12.872
Netzbezug (berechnet)	24.287	26.274	19.708

	%			
Eigenverbrauchsanteil	37,5	21,9	33,3	
Autarkiegrad bzw. Eigenstromdeckung	37,4	24,4	39,5	

Fazit

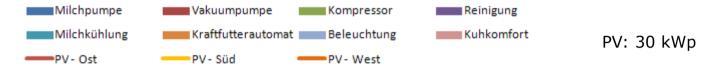
- Die Eiswasserproduktion ist eine Möglichkeit Solarstrom zu speichern und bedarfsgerecht zu nutzen.
- Durch die Umrüstung des Milchkühlsystems wurde der Stromverbrauch um 65% reduziert.
- Für die Direktkühlung des AMS und Kombi-Kühlung des Melkstands musste 57,5 % weniger Netzstrom bezogen werden.
- Wie aus der Modellbetrachtung ersichtlich, kann gerade bei Milchviehbetrieben mit konventionellen Melksystemen (2 Melkzeiten) mit Eiswasserkühlungen ein deutlich höherer Eigenstromverbrauch erzielt werden.
- Gerade in der Landwirtschaft mit vielen Verbrauchsbereichen aber auch den Möglichkeiten regenerative Energie zu erzeugen (Solar, Wind, Biogas) und zu speichern ist es sinnvoll, ein individuelles energetisches Gesamtbetriebskonzept zu erarbeiten.

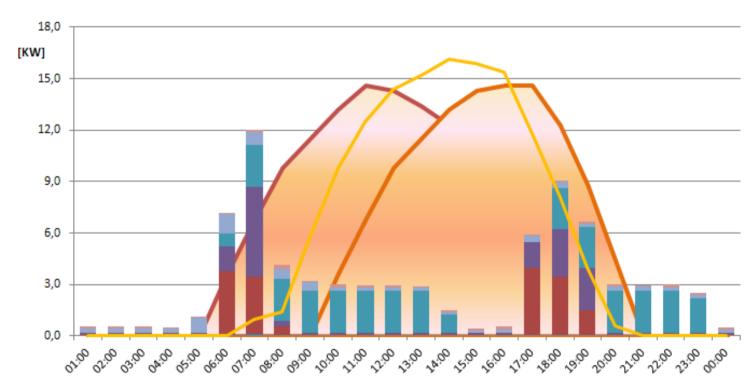
Vielen Dank für Ihre Aufmerksamkeit!

Modellbetrachtung

01.07.2014 – 30.06.2015 Milchviehbetrieb mit 70 Milchkühen, 9.000 kg Milch/Kuh

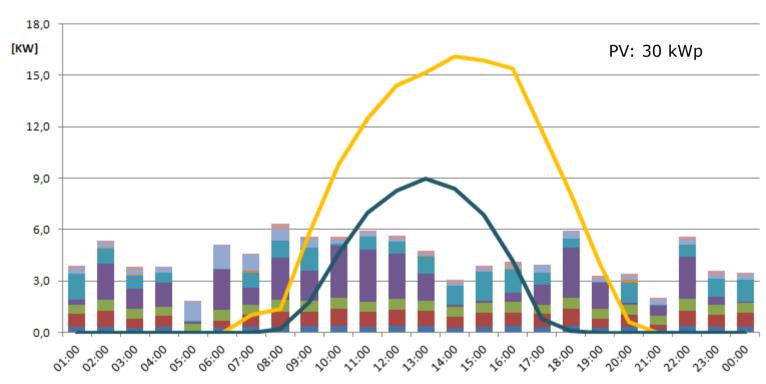
Melksystem	Melkroboter (AMS)	Melkroboter (AMS) Melkstand (FG) Melkstand (FG				
Kühlanlage	Direktkühlung	Direktkühlung	Vor-, Eis-, Direktkühlung			
PV 44 kWp 2014/15 ¹⁾		38.640				
Milchviehhaltung gesamt	38.778	34.743	32.580			
Eigenstromnutzung (berechnet)	14.492	8.468	12.872			
Netzbezug (berechnet)	24.287	26.274	19.708			


		€	
Stromkosten ausschl. Netzstrom	10.082	9.033	8.471
Eigenstromnutzung (berechnet)	1.739	1.016	1.545
Netzbezug (berechnet)	6.314	6.831	5.124
Stromkosten mit Solarstrom	8.054	7.848	6.669
Kostenvorteil	2.029	1.186	1.802



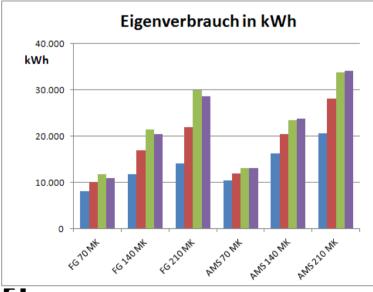
2. Ausrichtung der PV-Anlage: Tageslastgang 55 Milchkühe mit FG-Melkstand

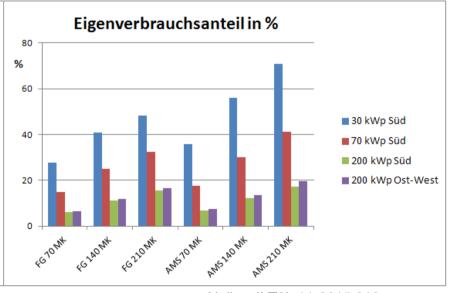
Tageslastgang FG-Melkstand (55 Milchkühe)



3. Technische Ausstattung: Tageslastgang 65 Milchkühe mit AMS

Tageslastgang AMS (65 Milchkühe)





4. Solarstromerzeugung und –verbrauch bei unterschiedlicher Anlagengröße

PV	PV	Milchviehbetrieb - Melktechnik	FG (Melkstand)		AMS (Melkroboter)			
Anlagengröße und Ausrichtung	Jahresertrag	Anzahl Milchkühe	70 MK	140 MK	210 MK	70 MK	140 MK	210 MK
		Stromverbrauch Betrieb	27.110 kWh	54.221 kWh	81.332 kWh	29.906 kWh	56.293 kWh	84.440 kWh
30 kWp Süd 29.080 kWł	Eigenverbrauch in kWh	8.045	11.833	14.071	10.385	16.312	20.580	
		Eigenverbrauchsanteil in %	27,7	40,7	48,4	35,7	56,1	70,8
70 kWp Süd 67.854 kWh	67.854 kWh	Eigenverbrauch in kWh	10.093	16.933	21.957	11.954	20.430	28.022
		Eigenverbrauchsanteil in %	14,9	25,0	32,4	17,6	30,1	41,3
200 kWp Süd 193.869 kWh	Eigenverbrauch in kWh	11.761	21.509	29.982	13.067	23.483	33.801	
		Eigenverbrauchsanteil in %	6,1	11,1	15,5	6,7	12,1	17,4
200 kWp Ost- West 172.715 k	172.715 kWh	Eigenverbrauch in kWh	10.987	20.347	28.630	13.174	23.696	34.091
		Eigenverbrauchsanteil in %	6,4	11,8	16,6	7,6	13,7	19,7

