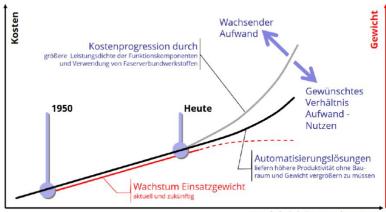


Autonome Fahrzeugtechnik im Ackerbau

Feldrobotik

Till Kunkel, Referat 71

Gliederung


- Aktuelle Herausforderungen in der Landwirtschaft
- Aktuelle Situation am Markt
- Konzepte und Ideen
- Verfügbare Lösungen für den Ackerbau
- Einblick in Sonderkulturen

Aktuelle Herausforderungen

- Fachkräfte Mangel
- Schlagkrafterhöhung durch "Größer, Breiter, Stärker" stößt an Grenzen
- Nachhaltigkeit und Umweltschutz rücken vermehrt in den Focus
- Digitalisierung und Landwirtschaft 4.0 bieten neue Chancen
- Landwirtschaftsstrategie: Verminderung des chem. Pflanzenschutz um 50% bis 2030

Robotik kann ein Lösungsansatz sein

Produktivität, Kundennutzen

Progressiver Anstieg der Maschinenkosten durch die Größenund Gewichtbegrenzungen

> Quelle: Konzept zur Entwicklung eines autonomen Schwarmsystems für den Pflanzenbau

Vier Ebenen der Autonomie

- I. Vollständig von Menschen gesteuerte Maschinen, d. h. ohne oder mit geringer technologischer Hilfe
- II. Assistierte menschengeführte Maschinen, d. h. mit technologischer Unterstützung, z.B. mit GPS-unterstütztem Fahren
- III. Überwachte autonome Maschinen, d. h. mit autonomen Funktionen, die direkt von einem Menschen betreut werden
- IV. Völlig autonome Maschinen, d. h. ohne menschliche Überwachung

Gesetz zum autonomen Fahren vom 28.07, 2021

Technische Aufsicht

- Keine fahrzeugführende Person, dafür technische Aufsicht als Verantwortlicher
- Keine ständige Überwachung notwendig
- Evidenzkontrolle
- Funktionsstatus bewerten und reagieren
- Beaufsichtigung mehrerer Fahrzeuge ist grundsätzlich zulässig
- Kommunikation über externes Kontrollsystem

Definition Feldroboter

Automatisierung:

- "(…) eine ursprünglich durch menschliche Beobachtung, Überlegung und Handlung ausgeführte Folge von Vorgängen zwangsläufig nach einem festgelegten Programm mit technischen Mitteln zu bewirken." BECHAR, A. und C. VIGNEAULT
- Autonome Feldroboter:
 - "(…) Roboter, die in einer automatisierungsaversen Umgebung, also einer nicht kontrollierten und nicht vollständig bekannten Umgebung, entsprechend automatischen Interpretationen von Sensordaten aus dieser Umgebung selbstständig zielgeleitet agieren" HERTZBERG, J

1. Konzepte und Ideen

- Autonome Trägersysteme
- Spezialisten
- Roboterschwärme
- Farming as Service

Quelle: https://www.fendt.com/de/fendt-xaver Quelle: https://www.ecorobotix.com/de/avo-Quelle: https://www.ecorobotix.com/de/avo-Quelle: https://www.ecorobotix.com/de/avo-Quelle: https://seedotrun.com/index.php

Aktuelle Situation (Markt)

field of application	status	manufacturer	machine
carrier / tractor	<15 1 <15 1 1 1 1 1 10 >20	Agro Intelligence (DK) AgXeed (NL) Directed Machines (USA) H2Trac (NL) Korechi Innovations (CA) Monarch Tractor (USA) Sitia (FR) SwarmFarm Robotics (AUS) Webull Int. Techn. (CN)	Robotti 150D AgBot Land Care Robot EOX-175 RoamIO Monarch Tractor Trektor SwarmBot 5 Tank
scouting	1	Small Robot Company	Tom
mech. weeding mech. weeding+	<15 3 1 1 >100 >20 <20 >1000 >100 1 5 >10	Carré (FR) Ekobot (S) Odd.Bot (NL) Pixelfarming Robotics (NL) Naïo Technologies (FR) Naïo Technologies (FR) Naïo Technologies (FR) FarmBot (USA) FarmDroid (DK) Farmertronics Eng. (NL) Kilter (N) FarmWise Titan (USA)	Anatis Gen-1 Weed Whacker Robot One Oz Dino Ted Genesis v1.5 FD20 eTrac AX-1 FT-35
	1 1 >100	Small Robot Company (UK) VitiBot (FR) Vitirover (FR)	Dick Bakus Vitirover
spraying	<15 1	Ecorobotix (CH) Jacto Ag. Machines (NL)	Avo Arbus 4000 JAV
spraying+	>10	Raven Industries (USA)	Dot
special	1 1 1	Rivi Pietro (I) TerraClear (USA) Agrobot (ES)	PothaFacile Rock picker Bug Vacuum robot

Quelle: M. Hengst, nach Future Farming Field Robots Catalogue

In Deutschland verfügbare Feldroboter

AGROINTELLI

Agrointelli – Robotti

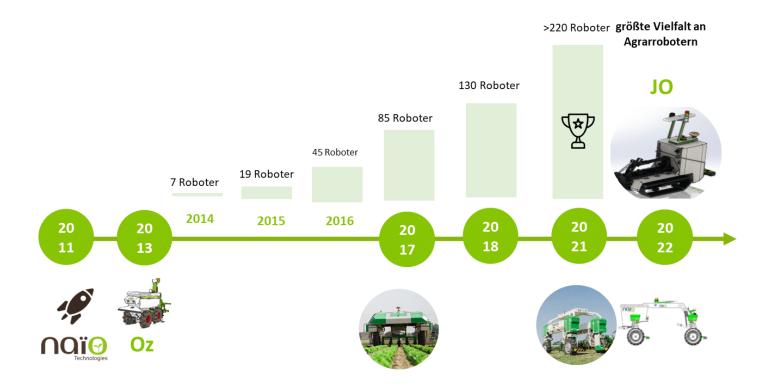
- Autonomer Geräteträger aus Dänemark
- Stand 2022: mehr als 30 Robottis weltweit verkauft
- Vertrieb in D durch geo-konzept

Quelle: http://www.agrointelli.com

Agrointelli – Robotti

Details

- Gewicht ca. 3 Tonnen
- Genaue und präzise RTK-Navigation
- Dieselmotor, Standard Hydraulik und Komponenten
- Standard Dreipunktaufnahme für Anbaugeräte
- GEO-Zaun, Notausschalter, LIDAR, Stoßfänger, Remote- und Online-Stopp als Sicherheitssystem


AgXeed - AgBot

- Dieselelektrischer Werkzeugträger für verschiedene Aufgaben
- 3 Modelle, Raupenfahrwerk, 4-Rad und 3-Rad
- 156 PS bzw. 75 PS
- Genaue und präzise RTK-Navigation
- Standard Dreipunktaufnahme für Anbaugeräte
- Innovative Planungssoftware

Quelle: https://agxeed.com

Robotiklöslung für den Ackerbau Naio Technologies

Robotiklöslung für den Ackerbau Naio Technologies - Oz

- Bodenbearbeitung, Säen, Pflanzen,
 Unkrautbekämpfung und helfende Hand
- Genaue und präzise RTK-Navigation
- Rein Elektrisch
- Optimal ab 1 bis 5 ha
- Geeignet für Züchter, Gemüseanbau, Baumschulen und

Robotiklöslung für den Ackerbau Naio Technologies - Dino

- Mechanische Unkrautregulierung in im Gemüseanbau
- Navigation über RTK GPS, zusätzliche Präzision durch Kamera-Reihenerkennung und Verschieberahmen
- Rein elektrisch, 8 10 h
- Hackwerkzeuge von KULT
- Notausschalter, LIDAR, Stoßfänger

Robotiklöslung für den Ackerbau Naio Technologies - Dino

- für Gemüse und Käuteranbau konzipiert, aber
 - Forschung von Fraunhofer EZRT und Strube den Dino an Zuckerrüben anzupassen (2020)

Quelle: https://www.strube.net/

Robotiklöslung für den Ackerbau Naio Technologies - ORIO

- 4 Motoren mit je 3000W
- 2 Werkzeughalter
 - Zwischenachsanbau mit Verschieberahmen
 - Heckwerzeugträger
- Arbeitsbreite bis 3 m
- Geschwindigkeit bis 5 kmh

Farmdroid – FD20

I automatische GPS gestützte Rübenaussaat und mechanische Unkrautbekämpfung in und zwischen der Reihe



Farmdroid – FD20

- Flächenleistung 3,5 ha/Tag bei 6 Tagen/Woche auf 21 ha, abhängig von Unkrautdruck, Feldarbeitstagen und Flächenstruktur
- Einsatz bis kurz vor Reihenschluss möglich

Ecorobotix – AVO

- Autonomer Roboter zur chem. Unkrautbekämpfung
- Automatisches erkennen und selektives besprühen der Unkräuter

Quelle: https://www.ecorobotix.com/de/

Farming revolution – Farming GT

- Autonomer Roboter zur mechanischen Unkrautbekämpfung
- Große Database zur Unterscheidung von Pflanzen
- 5 mm Genauigkeit, auch bei Überlapung
- Angeboten als Mietmodell

Quelle: https:// https://farming-revolution.com/

Umrüst-KIT für Traktoren

Quelle: https://www.agrarheute.com

Robotiklöslung für den Ackerbau TU Dresden - Feldschwarm

- Feldschwarmeinheit 1 (FSE I) traktorgezogen
 (FSE I steuert Traktor)
- Feldschwarmeinheit 2 (FSE II) selbstfahrend (Antriebs- u. Werkzeugmodul)
- Modulares, scalierbares autonomes System
- Schwarmsteuerung
- Umfelderfassung
- Bodenbearbeitung

Quelle: M. Hengst, TU Dresden, AST

TU Dresden - Feldschwarm

- Modulares System vielseitiger Einsatzszenarien
 - optimale Anpassung an Fruchtart- u, Standortspezifika
 - einfacher Tausch der Werkzeuge (Prozessmodule)
 - aktive und passive Werkzeuge möglich
 - Werkzeuge mit eigener Prozessteuerung und Überwachung (Einstellung, Verschleiß)
 - Mittige Werkzeugkopplung für optimale Gewichtsverteilung
 - Hohe Flexibilität durch Nutzung verschiedenen Anbauräume
 - Werkzeuge benötigen kein Fahrwerk oder weitere Anbauteile
 - Nutzung vorhandener Traktoren (FSE I)

Quelle: M. Hengst, TU Dresden, AST

Fraunhofer IVI - Ceres

- Autonomer Roboter zur mechanischen Unkrautbekämpfung
- Voll elektrisch
- Automatisierte Nachladelösung auf einem Anhänger

Quell:https://www.ivi.fraunhofer.de/

Robotiklöslung für Sonderkulturen

TU Dresden - Elwobot

- Autonomer Roboter für Obst und Weinbau
- Dieselelektrisch und voll elektrisch
- Mulchen und teilflächenspezifischer PSM-Ausbringung

Robotiklöslung für Sonderkulturen

Cerescon - Sparter

- Selbstfahrer zur Spargelernte
- Automatisches erkennen des erntereifen Spargels und ernten

Quell: https://www.cerescon.com

Robotiklöslung für Sonderkulturen RoboVeg

- Roboter zur Brokkoliernte
- Automatisches erkennen des erntereifen Brokkoli und ernten

Quelle: https://www.dlg-mitteilungen.de

Quelle: https://www.horsch.com

Vielen Dank!

